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SUMMARY 

This paper describes a three-step finite element method and its applications to  unsteady incompressible fluid 
flows. Stability analysis of the one-dimensional pure convection equation shows that this method has 
third-order accuracy and an extended numerical stability domain in comparison with the Lax-Wendroff 
finite element method. The method is cost-effective for incompressible flows because it permits less frequent 
updates of the pressure field with good accuracy. In contrast with the Taylor-Galerkin method, the present 
method does not contain any new higher-order derivatives, which makes it suitable for solving non-linear 
multidimensional problems and flows with complicated boundary conditions. The three-step finite element 
method has been used to simulate unsteady incompressible flows. The numerical results obtained are in 
good agreement with thosc in the literature. 
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1. 1NTRODUCTION 

The finite element method appears to be very convenient and most promising for obtaining 
spatial approximations to problems in complex geometries. However, for convection-dominated 
problems it has been found that combining low-order time-stepping methods with conventional 
Galerkin spatial discretization often fails to produce stable numerical results. because the central 
treatment of the first-order spatial derivatives in GaIerkin formulations is not able to cope with 
the dominant role played by the characteristic in hyperbolic problems. In order to overcome this 
difficulty, upwind finite element methods have been proposed, among which the SUPG (stream- 
line upwind,'Petrov-Galerkin) formulations' - 6  are believed to be more accurate than other 
upwind schemes. 

Another accurate method for the finite element solution of hyperbolic problems is the 
Taylor-Galerkin m c t h ~ d . ~  - l o  For the advection equation the starting point is the substitution of 
space derivatives for the time derivatives in a Taylor expansion, as used in the derivation of the 
Lax-Wendroff method," the only modification being that the procedure is carried out to third 
order. When combined with conventional Galerkin spatial discretization, the resulting scheme 
possesses the desired properties of extended stability and improved phase accuracy. Moreover, in 
contrast with the SUPG method, it is not necessary to modify the free parameter in the 
T'aylor-Galerkin method. 

It is notable that most applications of Taylor-Galerkin methods are second-order 
schemes,'*- l 4  which are accurate enough for many practical flows. However, second-order 
schemes can be only used for small values of the time step,' i.e. the Courant number must be less 
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than 1/J3. The cost of using small time steps is especially burdensome for the Navier-Stokes 
equations, where a pressure update is required at each time step. To ease this problem, 
a subcycling technique was proposed by Gresho et ~ 1 . ' ~  which permits less frequent updates of the 
pressure field with little loss of accuracy. The third-order Taylor-Galerkin scheme has an 
extended stability domain which is cost-efficient for incompressible flows. However, its applica- 
tions are mainly to hyperbolic problems and some convection4iffusion equations,?- because 
too many terms are introduced in the third-order time derivative term, especially for non-linear 
multidimensional equations, and treatments of the boundary integrations arising from high-order 
time derivative terms are too complicated. 

A three-step finite element method based on a Taylor series expansion in time is proposed in 
the present study. It is not necessary to calculate any new higher-order spatial derivatives here. 
This makes it convenient to simulate non-linear multidimensional flows. The ideas are almost the 
same as those of the two-step finite element method,'"-'' but the present scheme retains the good 
accuracy and uniform CFL property of the Taylor-Galerkin The method is 
cost-effective for incompressible flows since it allows less frequent updates of the pressure field 
with good accuracy. 

Stability analysis of the one-dimensional pure convection equation is performed. The results 
show that the present method has third-order accuracy and an extended stability domain 
compared with the Lax-Wendroff finite element method. The present three-step finite element 
method is applied to solve incompressible laminar flows. The same order of interpolation is used 
for the velocity and pressure. 

Before introducing the three-step finite element method, it is necessary to have a brief statement 
of the two-step Lax-Wendroff finite element method. 

2. TWO-STEP LAX-WENDROFF FINITE ELEMENT METHOD 

Let us consider the convection-diffusion equation 

where f is the concentration, ui is the velocity, k is the diffusion coefficient and S, is the source 
term. Performing a Taylor series expansion in time, we have 

By approximating equation (2) to second-order accuracy, the formulations of the two-step 
method can be derived as 

df( t + At/2) 
dt  . ,f( t +At)  =f( t )  + At 

(3)  

Spatial discretization of equations (3) can be performed using the standard Galerkin finite 
element method. When the resulting finite element formulations are solved using the consistent 
mass matrix, the well-known two-step Lax-Wendroff finite element formulation is derived. This 
method is more accurate and stable for convection-dominated  flow^,'^,^^ but the uniform CFL 
condition cannot be achieved. The stwo-step Lax-Wendroff finite element method has been 
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applied to calculate incompressible flow problems.' 6 -  

time step At should be less than h/(  I U I  + 1 0 1 )  because of the stability condition.'6 
For high-Reynolds-number flows the 

3. THREE-STEP FINITE ELEMENT METHOD 

By approximating equation (2) up to third-order accuracy, the formulations of the three-step 
method can be written as 

d J (  t + At/2) 
at 

f ( t  + At) = f ( t ) +  At 

When equations (4) are discretized using the standard Galerkin finite element method and the 
resulting finite element equations of the consistent mass matrix forms are solved by Jacobian 
iteration, the three-step finite element method is obtained. This is a new finite element method, 
it retains the advantages of the Taylor-Galerkin method such as third-order accuracy and the 
uniform CFL condition. The method is cost-efficient for incompressible flows compared with the 
second-order Lax-Wendroff finite element method because it permits less frequent updates of the 
pressure field with good accuracy. In contrast with the Taylor-Galerkin method, the three-step 
finite element method does not contain any new higher-order spatial derivatives and can thus be 
applied to solve non-linear multidimensional flows with ease. 

4. STABILITY ANALYSIS 

Spatial discretization of equations (3) and (4) can be carried out by the standard Galerkin method. 
In the one-dimensional pure convection case with constant velocity and using a piecewise linear 
finite element h on a uniform mesh, the discrete formulation of equations (3) can be obtained as 

n f  112 - f ; - + ; l 2  

(5 )  
(fi+1-2J+fi-1)" fi+l 

2 - cr 6 =fl+ (fi+1-2J+J1-1)"+' 
6 f ; " +  

where C,=uAt/h is the Courant number and A is the concentration value at point i. In order to 
perform a Fourier analysis, letf;= V"eijhp= V"eijg, where j =J(-l), p is the wave number and 
5 = hp, so that the amplification factor g(5. C,) is defined by V n + l  = g(5,  C,) V".  For equations ( 5 )  
the formulation 

can be derived, which in the asymptotic limit 5-0 reduces to 

g(5,c,)=1-jC,5-~crz52+. . . . (7) 
This shows that the two-step Lax-Wendroff finite element method is globally second-order- 
accurate. The analytical solution of the pure convection equation can be assumed as 
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f (  x, t )  = X ( x )  T (  t )  = Aejp(x-lrt), where A is a constant; thus the analytical amplification factor 
ga(5, C,) can be obtained as ga([, C, )= . f (x i ,  t n f ' ) / f ( x i ,  t")=e-JpuAt=e-JCrc. By rewriting 
g( l ,  C,)= lgle-J@~t-cr), the nature of the phase errors and dissipation errors in the schemes can be 
examined. The amplification error p is defined as p (  5, C,) = 1 g I / /  ga 1 = 1 g 1 and the phase error 4 is 
defined as d(t ,  C,)=arg(gj/arg(g,)=$/C,<. The condition of numerical stability p <  1 leads to 
C, < 1/J3,' to be compared with the condition C , g  1 of the Lax-Wendroff finite difference 
method. The reduction of the stability domain is due to the presence in the finite element 
equations of the consistent mass matrix: which endows the scheme with fourth-order spatial 
accuracy.9310 Following the same procedure as for the two-step Lax-Wendroff finite element 
method, the discretized formulations of the three-step finite element method expressed by 
equations (4) are obtained as 

j - ; + 1 1 3 + .  ( f i  + - 2j+J - )"+ = f S +  (fi+ 1 -?i+.h- 1 ) "  fl+ 1 -fl- 1 

6 '  
- C, 

6 6 

again let f l =  V"eijhp= VneiiS , so that the amplification factor g(<, C,) of equations (8) can be 
derived as 

which in the asymptotic limit t + O  reduces to 

g(5, C,)= 1-jC,&+C1(2+ijc,353+. . . . (10) 

By comparison with e Jcrt for the differential equation, it follows that the three-step finite 
element method is third-order-accurate. In Figure 1 the amplification error p and the phase error 
4 are compared for the two-step Lax-Wendroff finite element method and the three-step finite 
element method. These figures show that the three-step finite element method is stable for 
O<C,< 1, but that the two-step Lax-Wendroff finite element method is unstable for C,>,O.5. 
Thus the third-order correction extends the stability domain with respect to the second-order 
Lax-Wendroff finite element method and ensures the unit CFL condition. The phase shift of the 
Taylor-Galerkin method is zero for C,=O.5 and 1.0. However, the phase snift of the three-step 
finite element method is negative at intermediate and short wavelengths, which is almost the same 
as that of the two-step Lax-Wendroff finite element method. In practical simulations it is very 
difficult to keep the Courant number as a constant; thus the relatively poor phase error of the 
three-step method for C,=0.5 and 1.0 is not serious. 

5. PURE CONVECTION FLOW 

In order to display the accuracy of the three-step finite element method, the pure convection 
movement of a cosine hill in a rotating flow field is presented. The pure convection equation is 
expressed as 
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+ 
+ 

A 

The coordinate system 

Figure 1. Amplification error p (left) and phase error q$ (right): 0; three-step FE method; A ,  two-step FE method; 
+, Tayior-Galerkin method 

where the velocity uj is defined as 

u1= -xz, u z = x 1 .  (12) 
A uniform grid of 30 x 30 is used and the initial (also exact) distribution of the hill is shown in 
Figure2(a). On the basis of equations (8), the three-step finite element formulations can be 
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Figure 2. Shapes of the hill after one rotation: (a) initial (or exact) distribution of the hill; (b) by two-step FE method 
(lumping), At=OQlS7; (c) by two-step FE method, At =O.O157; (d) by three-step FE method, At =00314 

expressed as 
f n +  113 = f n - -  At 

u j f y j ,  

j - n + 1 / 2  =y-- At uj f yi'113, (13) 2 
f n + l -  -f n -Atuif:; 'I2.  

Spatial discretization of equations (13) is performed using the standard Galerkin method. The 
resulting finite element equations are obtained as 
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where the matrices M,, and N,, are defined as 
c 

Here V‘ is the element domain and @, is a linear interpolation function defined as 

@,= a, + baxl  +c,xz, (16) 

where a,, b, and c, are the parameters of the element geometry. For the two-step finite element 
method, when the lumping mass matrix is used instead of the consistent mass matrix, the resulting 
scheme is the same as the Lax-Wendroff finite difference scheme. Figure 2(b) shows the results 
obtained by the lumping finite element method. The time step At is 0.01 57 s. The oscillations are 
about 25% of the height of the hill for one rotation. Because the oscillations grow so fast with 
time, no results can be achieved after two rotations. The presence of the consistent mass matrix in 
the finite element method makes it possible to improve the accuracy significantly. This has been 
verified by numerical experiments.” The finite element equations are solved by Jacobian 
interation;16 three iterations are carried out in the calculations. The result obtained by the 
two-step finite element method is shown in Figure 2(c); a small value of At (0.0157 s) is used in 
order to achieve a stable solution. After one rotation the oscillations at the foot of the hill are 
about 7% of the height of the hill. The CPU time for one rotation is 152 s on the FACOM VP-30 
computer. For the three-step method the relatively large time step At = 0.0314 s is used. The 
calculated results of one rotation are shown in Figure 2(d). This figure shows that the three-step 
method is stable for a larger time step, but there is no improvement in the accuracy. The shape of 
the hill is almost the same as that obtained by the two-step method even if the larger time step is 
used. It costs 11.5 s of CPU time on the same computer for one rotation, which is 75% of that for 
the two-step method. 

6. INCOMPRESSIBLE FLOWS 

For incompressible flows, as we know, the pressure is usually determined by a derived Poisson 
equation, which is the most time-consuming procedure in one time step. Since the present 
three-step method allows the use of a larger time step than that of second-order finite element 
sc-,emes,~2-14,16s17 this results in a reduction in the total CPU time. The flows are governed by 
the Navier-Stokes equations 

P ,  i 
P 

- -+ V ( U i ,  j + uj, i ) ,  j +.J in V, 

u ~ , ~ = O  in V, (18) 
where V is the computational domain, ui is the velocity component in the xi-co-ordinate 
direction,J is the external force, t is time, p is the pressure, p is the fluid density and v is the 
kinematic viscosity of the fluid. The boundary conditions are 

ui=lii on S1,  

where oij is the stress, S1 and S2 are two disjoint non-overlapping subsets of the boundary S and 
the circumflex indicates the prescribed value on the boundary. By applying the three-step finite 



800 C. B. JIANG AND M. KAWAHARA 

element method, the following discretized equations can be obtained: 

Spatial discretization of equations (20) can be performed using the standard Galerkin method. 
The resulting finite element equations can be expressed as 

where ni is the component of the unit vector normal to the boundary. The elemental matrix Mu, is 
expressed by the first of equations (15) and Limp, N $  and S;u are defined as 

n 

Before calculating the velocity ul" from the last formulation of equations (20). the pressure p"' 
has to be solved. By taking the divergence on both sides of the last formulation of equation (20) 
and introducing the incompressibility constraint ti;,: = 0, the following Poisson equation of 
pressure is derived: 
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By using the Galerkin finite element method, the weak formulation of equation (23) is obtained as 

I- I- , 

where p* is the weighting function of pressure. Since the pressure is solved from a Poisson 
equation, it is possible to use the same order of interpolation for the velocity and pressure instead 
of mixed order interpolation." By using the last formulation of equations (20), the normal 
gradient of pressure can be expressed as 

For most cases the boundary integration part of (26) is non-zero only on the outlet boundary. 
Detailed discussion of the pressure boundary conditions can be found in References 19 and 20. 
The final finite element formulation of (26) is 

where the elemental matrices are 
r 

6. I .  Catiity flows 

In order to confirm the accuracy and the computational efficiency of the three-step method, 
cavity flows with Reynolds numbers Re=400 and lo00 are calculated. For Re=400 a uniform 
grid of 21 x 21 and a time step At = 0.05 are used. The corresponding maximum Courant number 
i s  1.3. The velocity vector, pressure contour lines, streamlines and steady state velocity profiles are 
shown in Figures 3 (a)-3 (d) respectively. The minimum streamfunction value (Ymin), the location 
gf the vortex centre (x,, y o ) ,  the maximum and minimum vertical velocity components ( V,,, and 
V R , , ~ j  along the horizontal centreline (x, 0.5) and the minimum horizontal velocity component 
'Urn,,) along the vertical centreline (03, y )  are compared with the literature values'6T21-23 in 
' I FT R e =  lo00 a refined uniform 41 x 41 mesh and a time step At =0.025 are used. The _.. 
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Figure 3. Steady solutions of cavity flow with Rr=400: (a) velocity vector; (b) pressure contour lines; (c) streamlines; 
(d) velocity profiles ( x , Reference 23) 

Table I. Main properties of cavity flow with Re=400 

Reference 16 41 x 4 1  -0.1012 (0.55, 0.60) -0.285 -0390 0.250 
Reference 21 33x17 -0.1136 (0.55, 0.60) -0335 -0.50 0.275 
Reference 22 67 x 67 -0.112 (0.56, 0.62) -0300 -0450 0293 
Reference 23 129 x 129 -0.1139 (0.56, 061) -0'327 -0.450 0.302 
Present 21 x21 -0.1134 (0.56, 0.62) -0.310 -0.450 0.294 

calculated steady results, i.e. the velocity vector, pressure contour lines, streamlines and velocity 
profiles, are shown in Figures 4(a)-(4(d) respectively. The main properties of the cavity flow are 
compared in Table 11. The present calculations are in agreement with the literature values.23924 

From equations (20) and (23)  it can be found that only the pressure value p n + l  is solved for one 
time iteration; this results in computational efficiency. The loss of third-order accuracy by not 
having pn+'I3  and p " + ' / *  in the first and second formulations of (20) may introduce an intolerable 
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Figure 4. Steady solutions of cavity flow with Re= 1ooO: (a) velocity vector; (b) pressure contour lines; (c) streamlines; 
(d) velocity profiles ( x , Reference 23) 

Table 11. Main properties of cavity flow with Re= lo00 

Reference 23 129 x 129 -0.1 179 (0.53, 0.56) -0-383 -0.516 0.371 
Reference 24 141 x 141 -0,1160 (0.53, 0.56) -0.367 -0.516 0.358 
Present 41 x41 -0.1176 (0.53, 0.56) -0.383 -0516 0366 

error. In order to  check the accuracy of the present three-step method, a modified three-step 
method can be derived as follows. 

Step 1 (modi$ed) 
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Step 2 (modiJied) 

Step 3 (modiJied) 

In the above modified three-step method the pressure values p n +  ' I 3 ,  p " +  'I2 and pn+'  are solved 
before solving u ; + " ~  and u:+ ' .  For the case of Re= 10o0, four points A (0.25, 0.75), 
B (0.75, 0 7 9 ,  C (0-75, 0 2 5 )  and D (0-25, 0.25) are chosen as observation positions. For 
two-dimensional cavity flows the mesh division can be expressed by m x m, where m is the nodal 
division number in one direction (x or y). The same time step A t ( m )  is used for the present 
three-step method and the modified three-step method, where A t ( m )  is a function of the nodal 
division number, while a relatively smaller time step 0 6 A t ( m  j is used for the two-step method.I6 
The calculations are carried until t=37.5 s, at which time the steady state velocity field is 
obtained. The time histories of velocity and pressure are plotted in Figures 5(a) and 5(b) 
respectively. These figures compare the results obtained by the different methods; the speeds of 
convergence are almost the same. In Figure 5(a) a very small velocity difference can be found only 
at point C during the development stage. For the pressure history (Figure 5(b)) a difference can be 
seen only at point B, the peak value obtained by the modified method being about 2% larger than 
that of both the three-step and two-step methods. These results show that the three-step method 
is accurate enough without considering the values. pn+1/3  and pn+''2. In the present two- 
dimensional simulation the non-iterative solver is used for the Poisson equation. The CPU time 
versus the nodal division number m is plotted in Figure 6. It can be seen that the three-step 
method is computationally efficient as the nodal number increases. The two-step method costs 
more CPU time owing to its limited stability domain. The modified three-step method is most 
expensive because of the effort required to solve the pressure Poisson equation. 

Owing to the extremely simple algorithm of the three-step method, it can be used for 
three-dimensional calculations without any modification. For three-dimensional flows the iter- 
ative solver is often used to solve the pressure Poisson equation, which means that much more 
CPU time is needed for this procedure. It is expected that the present three-step method is more 
efficient for three-dimensional problems. 

6.2. Unsteady density flow 

A density flow can be described as the stable parallel gravity flow of one fluid relative to 
another that results from small differences in their densities. Examples include a muddy under- 
flow in a lake or ocean, a volcanic ash flow, a moving atmospheric cold front and the mixing of 
fluids in many chemical engineering circumstances. The numerical example adopted here is 
illustrated in Figure 7. The two-dimensional c a l c ~ l a t i o n s ~ ~  make use of a square container. The 
width B of the container is 48 units and the fluid depth H a t  initial times is 16 units. At initial times 
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Figure 5. Time history of cavity flow with Re= 1ooO: (a) velocity versus time, (b) pressure versus time 

a fluid of density p1 = 1.0 t m-3 occupies the left-hand two-thirds of the container and a heavier 
fluid of density p z  = 1.2 t mP3  occupies the right-hand one-third of the container. The gravi- 
tational acceleration g = 9.8 m s-' is directed vertically downwards. The uniform computational 
grid consists of 21 x 61 nodal points. A time step At=0.04 is used. The CPU time for one time 
iteration is about 0.11 s using the FACOM VP-30 computer. The movements of the fluids are 
illustrated by markers. The region occupied by the heavy fluid is indicated by small circles (0), 
while small crosses ( x )  identify the lighter fluid. The movement of a marker is described by 

(32) $ + l -  -xi n +At(~Y"+ul) /2 .  
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Figure 6. CPU time versus nodal division number m (2D cavity flow with m x m nodal points) 

Figure 7. Schematic diagram of density flow 

The computation procedure is similar to that for the one-fluid case and the density of the fluid in 
an element is calculated from 

m l p l + m z P z  
P =  

m1+m2 ’ 
(33 )  

where m ,  is the number of markers in an element with density p1 and m2 is the number of markers 
with density p z .  The buoyancy effect of variations in density is accounted for by a Boussinesq 
approximation to the Navier-Stokes equations (17), i.e. we replace the external force 1 by 

fi’= - d i J S A . P ,  (34) 

where A p = ( p - p l ) / p o  and p o  is the mean density value over the whole domain. The main 
properties of the flow field are determined by the densimetric Froude number R, defined as 

By taking the viscosity values v=O-45, 0.3 and 0.1, the cases of densimetric Froude number 
R,  = 2 0 ,  300 and 900 are calculated in the present study. Since the free surface has a noticeable 



THREE-STEP FINITE ELEMENT METHOD 807 

Figure 8. Density front at times t = 2 ,  4, 6,  8 and 10 s (R ,=200)  
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Figure 10. Density front position versus time 

effect upon the subsequent motion of the fluids, the confined flow modelz5 is not considered here 
and the movement of the free surface is described by 

where q is the elevation of the free surface. The pressure is zero on the free surface and the slip 
velocity boundary condition is applied on the solid boundary. 

For R,  = 200 the distributions of markers at t = 2,4 ,6 ,8  and 10 s are shown in Figure 8 and the 
velocity vectors are shown in Figure 9. At the initial stage, e.g. t 6 4  s, the free surface of the right 
side decreases owing to the heavier fluid moving towards the left-down direction. A t  ta4 s the 
free surface of the right side increases owing to the lighter fluid in the upper layer moving towards 
the right direction. This results in a large velocity recirculation region. The maximum recircula- 
tion velocity is about 5 m s-  ’, which indicates that the flow is a convection-dominated one. The 
configurations of the two fluids can be identified clearly by the different markers. By defining the 
front position D as D = ( L -  L, ) /H,  where Lo = H is the distance occupied by the heavier fluid at 
time t = O  and L is the distance measured at the bottom of the container occupied by the same 
fluid, the front position versus time can be calculated as shown in Figure 10. The numerical 
results obtained by Daly and Parcht” are also plotted in the same figure. Their computations are 
stable under densimetric Froude number R, = 200-300 and the numerical results are compared 
with the experimental observation. The present calculations are stable under R, = 200-900 and 
the results obtained are in agreement with the literature.” The accuracy of the results is better 
than that of the lumping finite element m e t h ~ d . ’ ~ , ~ ’  In the simulations of References 26 and 27 an 
artificial diffusion coefficient is introduced which is much larger than the physical viscosity of the 
fluid; thus the results do not change with the densimetric Froude number. 

7. CONCLUSIONS 

The three-step finite element method retains the third-order accuracy and uniform CFL property 
of the Taylor-Galerkin method. Since no new higher-order derivative term occurs in the 
numerical formulations, the present method is suitable for non-linear multidimensional convec- 
tion-dominated flows and problems with comFlex boundary conditions. Owing to its extremely 
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simple algorithm, the present method can be applied to three-dimensional problems without any 
modification. 

This method has been extended to solve unsteady incompressible flows. The numerical 
examples show that the present method is computationally efficient and the numerical results 
obtained are in good agreement with the literature. 
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